首页 > 电路设计 > 设计规范 > EMC/EMI

EMC 三个规律、EMC 问题三要素、电磁骚扰的特性、以及五层次EMC 设计法

作者:网站编辑发布日期:2024-10-13 07:29:49 浏览次数: 评论:EMC


EMC 设计 
前面已经提过,EMC 的根本问题,解决 EMC 问题的根本办法,无论从市场经济的原则出发,还是从其它方面考虑,都是趁早进行 EMC 设计。从设计立项的一开始,就把 EMC 要求纳入设计任务书,作为设计的输入之一。EMC 设计,简单地说,就是仔细预测可能发生的各种 EMC 问题,进行方案和电路的优化选型,寻找一 种优化电路、机械结构和PCB 的设计解决方案,提高产品的设计质量,确保达到功能和性能指标的情况下,兼顾成本效益,避免EMC 问题。 为抑制和消除骚扰源,减小高频信号频率、减小高频电流回路面积、减小共阻抗耦合或感应耦合,选用 低速、低辐射器件,选用屏蔽机箱、屏蔽电缆和I/O 滤波器都是常用的措施。 

一般来说,EMC 设计可分五个层次。以下为五个层次EMC 设计要点: 
1)的方案选择、主要部件、集成电路的选型、电路和机械结构设计; 对于产品的成功与否,第一层次设计是最基本、最重要的,任何错误都意味着该产品项目彻底失 败。这一层主要EMC 考虑体现在: 
a) 方案选择、主要部件、集成电路的选型主要考虑减少辐射骚扰或提高射频辐射抗干扰能力,尽量选用本身发射小的芯片,如翻转时间长、工作速率低的器件,多地线脚的芯片(芯片实质就是集成度较高的电路模块,封装时多装地线脚,可以减小高速差模电流环面积 S,相应地减小芯片的发射);避免使用大功率、高损耗器件,它们往往是大的辐射源; 
b) 保证所选器件不工作在非线性区,以免产生谐波分量成为干扰源。 
c) 电路和机械结构设计除考虑减少辐射骚扰或提高射频辐射抗干扰能力外,主要考虑电源电路防外部骚扰包括浪涌、快速脉冲群、静电、电压跌落、电压变化等; 
d) 电路设计或方案应不使数字信号波形产生过冲,应使无用的谐波振荡幅度最小,使无用的高次谐波成分最少,避免引发强烈的电磁骚扰; 
e) 对集总参数电路,增加阻尼、 减小Q 值,防止振荡; 

2)PCB 的EMC 设计; 
对于产品的成功与否, PCB 的EMC设计是重要的一环。PCB 设计不合理,会产生无法补救的后果; PCB 良好的EMC 设计,有事半功倍的效果。PCB 的EMC设计应遵循以下内容: 
a) 尽量减小所有的高速信号及时钟信号线构成的环路面积,连接线要尽可能短,并使信号线紧邻地回路; 
b) 使用小型化器件和多层线路板,多层印制板可紧缩布线空间,高频特性好,容易实现EMC; 
c) 印制板层数选择考虑关键信号的屏蔽和隔离要求,先确定所需信号层数,然后考虑成本的前提下,增加地平面和电源层是PCB EMC设计最好的措施之一; 
d) 印制板分层原理与布置印刷电路、布置排线的原理一样,元件面下面为地平面,关键电源平面与其对应的地平面相邻,相邻层的关键信号不跨区,所有的信号层特别是高速信号、时钟信号与地平面相邻,尽量避免两信号层相邻; 
e) 个别电源层、地层不能作为一个连续的平面时,采用多网孔连接形成地格蜂窝网,有效减小电流环路面积,减小公共阻抗 R,加大信号与地层分布电容; 
f) 线路板布线设计时顺序考虑:电源和地/时钟线/信号线,布线应该短、直、粗、匀,不要直角和突变,不应有“之”字形,用圆角代替尖锐走线,尽可能加宽电源和地的布线,电源和地层的分割,尽量符合微带线和带状线要求; 
g) 走线尽可能远离骚扰源,布线考虑铁氧体材料的使用,预留磁珠和贴片滤波器的位置,以备按需加减; 

3)电与接地、高速信号线路及内部线缆的EMC 设计; 
PCB 的EMC 设计中也提到供电与接地、高速信号线路的EMC 设计,此外,还应遵循以下内容: 
a)芯片间使用低阻抗地连接(地平面),不同芯片供电脚间阻抗尽量小,芯片供电脚(意思是离芯片供电脚很近的供电线上)与地间接高频旁路电容,供电布线预留磁珠和贴片滤波器的位置,以备按需加减; 
b) 布线、I/O 排线的核心原则就是减小电流环面积S,布置排线的原理与印制板分层原理一样,关键电源线与其对应的地线相邻,所有的信号层特别是高速信号、时钟信号线与地线相邻,尽量避免两信号线相邻; 
c) 为避免接地线长度过长(接近λ/4),可采用多点就近接地,接地线高频阻抗要小; 
d) 减小电缆的天线效应及减小偶极子天线效应,跨线、I/O 排线采用屏蔽性能好的线缆,内导线采用多股双绞线,使空间场互抵,屏蔽层可作为回线; 
e) 机内采用屏蔽线防止感应噪声; 
f) 滤波器的输入输出线应拉开距离,忌并行走线,以免影响滤波效果; 
h) I/O 接口注意高速电路阻抗匹配,减小、消除反射; 

4) 屏蔽设计; 
屏蔽好的要求有三:完整的电连续体;滤波措施;良好的接地。 对于信息技术IT类设备,当主板及配置选定的情况下,提高整机的屏蔽效果和各个部分的隔离效果 非常重要,尤其个人计算机和液晶显示器。这里只说屏蔽设计: 
a)计算机机壳内骚扰场强较大,机壳塑料部分未涂导电材料或所涂导电材料不佳,机箱有孔洞、缝隙,不 是一个完整电连续体,进出线滤波不好,最终都可导致辐射骚扰超出限值。机箱为了更好屏蔽电磁辐射,既能照顾到机箱的散热需求,又能有效地防止电磁波的衍射,开孔尺寸一般不超过4mm; 
b) 根据产品实际进行屏蔽设计,端口、通风孔、孔洞、连接缝隙的屏蔽性都是值得考 虑的因素; 
c) 液晶显示器为了更好屏蔽电磁辐射可以采用喷涂导电材料的外壳(接缝处要喷涂导电材料); 
d) 为了将辐射减到最小,尽量使用通过了CQC (EMC方面)自愿认证的机箱; 
e) 为保证机箱的密封性,要使用精密模具冲压成型,设计适当的弹点和卷边; 
f) 变压器加静电屏蔽及接地等 

5)输入/输出的滤波设计 
电源线滤波和信号线滤波的重要性并不亚于机箱屏蔽,滤波关键是针对EMC 要求,兼顾达标和经济的原则。在 I/O 接口部位,一般采用高频滤波效果好、安装简单的滤波连接器。在电缆上缠绕或套用铁氧体磁环也能起到一定的滤波吸波作用。设计或使用信号线滤波器时,滤波器的截止频率须高于电缆上要传输的信 号频率。 
a)传导骚扰问题处理的方法主要是低通滤波。在1MHz以上时,传导发射问题通常是由辐射发射的耦合而引起的,须综合运用抑制传导发射和辐射发射的技术措施,如屏蔽、去耦和滤波; 右图是一个高性能电源滤波电路,有二级共模和一级差模滤波,共模和差模骚扰抑制能力较强,适用于要求抑制较强骚扰发射的 场合。 
b)滤波电路的衰减性能与源和负载的阻抗关系很大,失配越大,滤波器衰减电磁骚扰的效果越好。大多数情况下,电源线表现为低阻抗,则滤波器的输入端应为高阻抗。另一方面,设备既可能为高阻抗,也可能为低阻抗。对于线性电源高阻抗,为获得阻抗失配,负载端应设计为低阻抗。对于开关电源和同步电机这样的低阻抗设备,负载端设 计为高阻抗。 
c) 减共模和差模电容,加减共模和差模线圈,调整电容参数和线圈匝数,共模和差模插入损耗对频率的曲线都可改变。滤波器的泄漏电流是指相线和中线与外壳地之间流过的电流。它主要取决于连接在相线与地和中线与地间的共模电容。 共模电容的容量越大,共模阻抗越小,共模骚扰抑制效果越好,但安全标准规定泄漏电流不能过大。 
d) 电源滤波器安装位置应靠近电源线入口处,如能做成与接口一体化更好。对于金属屏蔽机箱,选用独立电源屏蔽滤波器,安装在电源线入口处,并确保滤波器外壳与设备机箱(地)良好电接触,这样的效果是最 好的。滤波器接地通常固定在电缆出口处的公共地金属构件上。 

给企业的建议 
一、 了解EMC 问题三要素、电磁骚扰的特性、电磁骚扰源和传播途径,掌握五个层次EMC设计法 则,坚持利用EMC规律,趁早考虑和解决EMC 问题;遇到PCB 必须重新设计或结构必须重新设计时,大家只有后悔EMC 考虑得迟了。治病不如防病,治病必须对症下手,宜早不宜迟,解决EMC 问题是一样的道理。 
二、 当产品的EMC 不符合要求需要整改时,首先要如同治病一样,诊断出电磁骚扰源、耦合途径, 然后利用EMC 设计要点中提到的方法,对症下手,综合运用屏蔽、滤波吸波、接地等措施实施改进。 改进途中,测试再不通过,先检讨问题判断是否正确?对策是否失误?使用器件参数是否需要调整?不要一下子就改变初衷,应不慌不忙。整改时要特别注意,正确诊断出电磁骚扰源、耦合途径后,采用EMC 抑制器件时,不但要选择合适,而且所用器件要货真价实,才不会久治不愈。 
三、 工厂应对关键生产工序进行识别,关键工序操作人员应加以培训,制定相应的工艺作业指 导书或标准样件(可以采取拍照给出图片的方式),使生产过程受控。取最简化而且EMC 又有一定裕量的样机作为标准件,核对生产、装配工艺,检验时,着重进行EMC关键元器件和材料的检验/验证,以及装配工艺一致性检查。 
四、 为验证产品持续符合标准要求,工厂应在适当阶段对产品进行确认检验(本身不具备检测条件 时,抽样送有能力的机构进行检验),以确保产品持续符合EMC 要求,万一变化亦能及时发现。 
五、 当产品EMC关键件要改变、调整时,应用新的器件替换原器件重新制造几台样机进行测试,确认EMC 关键件改变和调整对整机EMC的影响。
 
小结 
了解 EMC 问题三要素、电磁骚扰的特性、电磁骚扰源和传播途径,掌握五个层次 EMC 设计法,EMC 会变得有规可循的,坚持 EMC 规律,趁早考虑和解决EMC 问题,即可省时省力,事半功倍。在EMC 工作方面,比照老中医看病方式,据症施治,有意识带点人性化,能提高解决问题的兴趣。 EMC 90%是设计出来的,整改出来的极少、极少。治病不如防病,治病必须对症下手,宜早不宜迟。道理简单,更需重视。 只要不断的学习和总结,今后的工作中,大家也会变得越来越自信、越有办法。

这篇文章对你有帮助吗?

已有 人觉得有帮助。已有 人觉得无帮助。

留言与评论(共有 0 条评论)
   
验证码:

PCB点网

https://www.pcb.wang/

电子电路 | 专注PCB硬件开发资料

Powered By PCB点网 简单又实用的硬件工程师网站

使用手机软件扫描微信二维码

关注我们可获取更多电子知识

感谢各位对PCB点网的支持!